

Climate Predictions with imperfect models

("Hadley Centre QUMP")

David Sexton

GERB-CERES workshop, 23-27 October, 2006

1.Introduction

- 2. Bayesian framework
- 3. Estimating model imperfection
- 4. Conclusions

Probabilistic predictions

Murphy et al 2004

Red curve calculated by weighting different parts of parameter space according to quality of simulation of present-day climate

What does probability distribution mean

- Could give policy-maker terabytes of model and observed data each time
- OR a summary statement of how future climate is consistent with the information provided
- Probability distribution is a function of
 - Model data
 - Observations
 - Prior information
 - Model imperfections
 - Analysis method and assumptions

Physics/dynamics matter...

- Compare models against several observational variables – with just one variable you can simulate climate well for the wrong reasons
- Will compare with present-day mean climate -Indirect assessment of key processes for our climate prediction but adds confidence to our prediction of one-off event
- We are not going to assume models are perfect so using better models has an impact

Bayesian framework

Bayesian prediction

- •Aim is to construct joint probability distribution p(X, m_h, m_f,y,o,d) of all uncertain objects in problem.
 - Input parameters (X)
 - Historical Model output (m_h)
 - Model prediction (m_f)
 - True climate (y_h,y_f)
 - Observations (o)
 - Model imperfections (d)
- It measures how all objects are related in a probabilistic sense

Goldstein and Rougier (2004) – The "Best-input" assumption

- Start with a perturbed physics ensemble
- Hypothesise that there is a set of input parameters, x*, that provide the best climate model
- •But acknowledge that this best model is imperfect and that there is a discrepancy, d, compared to real climate
- •We only know the probability that each point in parameter space is the best-input model. But that means we need a model at every part of parameter space...

Emulators

Emulators are statistical models, trained on ensemble of 300 slab runs, designed to predict model output at untried parameter combinations (a t-distribution at each sampled point)

Monte Carlo sampling of parameters combined with an emulator (combining lots of t-distributions) produces prior pdf (blue line).

Linking objects in Bayesian framework

Comparing models with observations

 Use likelihood function i.e. skill of model is likelihood of model data given some observations

$$\log L_o(\mathbf{m}) = -c - \frac{n}{2} \log |\mathbf{V}| - \frac{1}{2} (\mathbf{m} - \mathbf{o})^T \mathbf{V}^{-1} (\mathbf{m} - \mathbf{o})$$

V = obs uncertainty + emulator error + discrepancy

Constraining predictions

- Likelihood alters probability of x*
- Reduce uncertainty about the best input, x*

Most effective if a strong relationship exists

Discrepancy on future variable

- •Model not perfect so there are processes in real system not in our model that could alter model response by an uncertain amount.
- Places extra uncertainty on prediction variable in form of a variance

Discrepancy (ii)

- Avoids observations over-constraining the pdfs.
- Avoids contradictions from subsequent analyses when some observations have been allowed to constrain the problem too strongly.

Discrepancy (iii)

- Provides a means of accounting for model quality
 - Models with less imperfection given more weight dynamics/physics matter!
 - Model improvements can subsequently be tracked
 - Constraint of observations gradually improve as model improves rather than jumping from "unusable" to "usable".

Estimating a proxy for discrepancy

Estimating discrepancy

- Four ways I can think of...
 - Elicitation
 - Observations
 - Super-parameterised models
 - Ensemble of international climate models

Estimating discrepancy

- Use multimodel ensemble from AR4 and CFMIP
- For each multimodel ensemble member, find point in QUMP parameter space that is closest to that member
- There is a distance between climates of this multimodel ensemble member and this point in parameter space i.e. effect of processes not explored by QUMP.
- Pool these distances over all multimodel ensemble members

Adding information from other climate models e.g. summer UK rainfall

Posterior - no future discrepancy

Posterior – future discrepancy, no offset

Posterior – future discrepancy with offset

Biases in QUMP prediction of multimodel runs

X-axis is difference between each multimodel and its 'best point' in QUMP parameter space

Climate sensitivity

Properties of the climate prediction (i)

MULTIVARIATE

- Predicts joint distributions
 - Predictions of individual variables consistent with marginal distributions from joint analysis
 - Different prediction variables can be constrained by different observations
- Can use lots of observations to constrain prediction
 - Only new independent observations impact on probability distribution

Properties of the climate prediction (ii)

PRIOR

- Don't let predictions be dependent on sampling strategy
- Instead predictions are representative of whole parameter space given some expert-chosen distribution
- Allow a sensitivity analysis so it is easy to try out different expert's distributions

Properties of the climate prediction (iii)

MODEL IMPERFECTIONS

- Acknowledge that our models are not perfect therefore we have to be careful about comparing modelled and observed data
 - Don't let poorly modelled variables over-constrain PDF
- Allow for a modelling uncertainty additional to one explored by perturbing parameters:
 - Observable model variables
 - Forecast variables

Reducing uncertainty

- Improve observational uncertainties
- Improve model i.e. reduce discrepancy
- Run larger ensembles
- Use more observational constraints independent of the ones used already

Observational uncertainties

- Please keep producing better data sets that allow the model to be evaluated in more detail
- Require observational errors in an easilyaccessible format
- •Any advice on errors for ERBE, CERES, or ISCCP most welcome.
- •Any advice most welcome on new data sets and whether they need new model diagnostics.